3x^2+103x+392.25=0

Simple and best practice solution for 3x^2+103x+392.25=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+103x+392.25=0 equation:


Simplifying
3x2 + 103x + 392.25 = 0

Reorder the terms:
392.25 + 103x + 3x2 = 0

Solving
392.25 + 103x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
130.75 + 34.33333333x + x2 = 0

Move the constant term to the right:

Add '-130.75' to each side of the equation.
130.75 + 34.33333333x + -130.75 + x2 = 0 + -130.75

Reorder the terms:
130.75 + -130.75 + 34.33333333x + x2 = 0 + -130.75

Combine like terms: 130.75 + -130.75 = 0.00
0.00 + 34.33333333x + x2 = 0 + -130.75
34.33333333x + x2 = 0 + -130.75

Combine like terms: 0 + -130.75 = -130.75
34.33333333x + x2 = -130.75

The x term is 34.33333333x.  Take half its coefficient (17.16666667).
Square it (294.6944446) and add it to both sides.

Add '294.6944446' to each side of the equation.
34.33333333x + 294.6944446 + x2 = -130.75 + 294.6944446

Reorder the terms:
294.6944446 + 34.33333333x + x2 = -130.75 + 294.6944446

Combine like terms: -130.75 + 294.6944446 = 163.9444446
294.6944446 + 34.33333333x + x2 = 163.9444446

Factor a perfect square on the left side:
(x + 17.16666667)(x + 17.16666667) = 163.9444446

Calculate the square root of the right side: 12.804079217

Break this problem into two subproblems by setting 
(x + 17.16666667) equal to 12.804079217 and -12.804079217.

Subproblem 1

x + 17.16666667 = 12.804079217 Simplifying x + 17.16666667 = 12.804079217 Reorder the terms: 17.16666667 + x = 12.804079217 Solving 17.16666667 + x = 12.804079217 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-17.16666667' to each side of the equation. 17.16666667 + -17.16666667 + x = 12.804079217 + -17.16666667 Combine like terms: 17.16666667 + -17.16666667 = 0.00000000 0.00000000 + x = 12.804079217 + -17.16666667 x = 12.804079217 + -17.16666667 Combine like terms: 12.804079217 + -17.16666667 = -4.362587453 x = -4.362587453 Simplifying x = -4.362587453

Subproblem 2

x + 17.16666667 = -12.804079217 Simplifying x + 17.16666667 = -12.804079217 Reorder the terms: 17.16666667 + x = -12.804079217 Solving 17.16666667 + x = -12.804079217 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-17.16666667' to each side of the equation. 17.16666667 + -17.16666667 + x = -12.804079217 + -17.16666667 Combine like terms: 17.16666667 + -17.16666667 = 0.00000000 0.00000000 + x = -12.804079217 + -17.16666667 x = -12.804079217 + -17.16666667 Combine like terms: -12.804079217 + -17.16666667 = -29.970745887 x = -29.970745887 Simplifying x = -29.970745887

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-4.362587453, -29.970745887}

See similar equations:

| a^5*b^-3/c^2 | | 27=10w | | 12-0.20r=2r+1 | | a^5b^-3/c^2 | | -38-2v=7(1-v)-5 | | 2tanx=-tan(2x) | | 3/4y-(y-2/5)=1/40(y-2) | | M+1+m-7= | | 8-4x29/14 | | 6(4y+5)=30 | | 11x+21=3x+189 | | 0.5x+x=180 | | -3h-8=3h | | 540t=t | | (L)(L+2)4=192 | | 2s-12=14 | | N+3+5n=15 | | -6-w=8 | | (3y-5)=(y+11) | | 34-n=8(n+2) | | 12t^2+20t+48=0 | | K+5-4k=-19 | | (8x-8)=(6x+14) | | 2-0.50n=3n+16 | | 16=7v-5v | | 9x+2y=200.53 | | 14x+17+19x=-155 | | 3h=2-3h-10 | | F/2-4=1 | | x-0.2x=80 | | (6y+16)=(7y+2) | | =(x+5)+(-4x-2)+(2x+6) |

Equations solver categories